Effects of Milk Consumption on Health: Mendelian Randomization Study of Wide Phenomenon | BMC medicine

  • Willett WC, Ludwig DS. Milk and Health. N Engl J Med. 2020;382(7):644–54.

    CAS PubMed Google Scholar

  • Alvarez-Bueno C, Cavero-Redondo I, Martinez-Vizcaino V, Sotos-Prieto M, Ruiz JR, Gil A. Effects of milk and dairy product consumption on type 2 diabetes: Overview of systematic reviews and meta-analyses. Adv Nutri. 2019;10(suppl_2):S154–s163.

    PubMed Google Scholar

  • Fontecha J, Calvo MV, Juarez M, Gil A, Martínez-Vizcaino V. Consumption of milk and dairy products and cardiovascular disease: an overview of systematic reviews and meta-analyses. Adv Nutri. 2019;10(suppl_2):S164–s189.

    PubMed Google Scholar

  • Chen Z, Ahmed M, Ha V, Jefferson K, Malik V, Ribeiro PAB, et al. Dairy consumption and cardiovascular health: a systematic review and meta-analysis of prospective cohort studies. Adv Nutri. 2021.

  • Larsson SC, Crippa A, Orsini N, Wolk A, Michaëlsson K. Milk consumption and all-cause mortality, cardiovascular disease, and cancer: a systematic review and meta-analysis. Nutrients. 2015;7(9):7749–63.

    CAS PubMed Google Scholar

  • Barrubés L, Babio N, Becerra-Tomás N, Rosique-Esteban N, Salas-Salvadó J. Association between dairy product consumption and colorectal cancer risk in adults: a systematic review and meta-analysis of epidemiological studies. Adv Nutri. 2019;10(suppl_2):S190–s211.

    PubMed Google Scholar

  • Bermejo LM, López-Plaza B, Santurino C, Cavero-Redondo I, Gómez-Candela C. Consumption of milk and dairy products and risk of bladder cancer: a systematic review and meta-analysis of observational studies. Adv Nutri. 2019;10(suppl_2):S224–s238.

    PubMed Google Scholar

  • López-Plaza B, Bermejo LM, Santurino C, Cavero-Redondo I, Álvarez-Bueno C, Gómez-Candela C. Consumption of milk and dairy products and risk and mortality from prostate cancer: an overview of systematic reviews and meta- analyses. Adv Nutri. 2019;10(suppl_2):S212–s223.

    PubMed Google Scholar

  • McGuire S. Dietary Guidelines Advisory Committee Scientific Report 2015. Washington, DC: US ​​Departments of Agriculture, Health and Human Services, 2015. Adv Nutr. 2016;7(1):202–4.

    PubMed Google Scholar

  • Gateway to dairy production and products [https://www.fao.org/dairy-production-products/products/en/]🇧🇷

  • Vissers LET, Sluijs I, van der Schouw YT, Forouhi NG, Imamura F, Burgess S, et al. Dairy intake and risk of type 2 diabetes in EPIC-InterAct: a Mendelian randomization study. Diabetes Care. 2019;42(4):568–75.

    CAS PubMed Google Scholar

  • Bergholdt HKM, Larsen MK, Varbo A, Nordestgaard BG, Ellervik C. Lactase persistence, milk intake, hip fracture, and bone mineral density: a study of 97,811 Danish subjects and a meta-analysis. J Intern Med. 2018;284(3):254–69.

    CAS PubMed Google Scholar

  • Burgess S, Thompson SG. Mendelian Randomization: Methods for Using Genetic Variants in Causal Estimation. London: Chapman and Hall/CRC; 2015.

    Google Scholar

  • Almon R, Alvarez-Leon EE, Engfeldt P, Serra-Majem L, Magnuson A, Nilsson TK. Associations between lactase persistence and metabolic syndrome in a cross-sectional study in the Canary Islands. Eur J Nutri. 2010;49(3):141–6.

    CAS PubMed Google Scholar

  • Almon R, Álvarez-León EE, Serra-Majem L. Association of the European lactase persistence variant (LCT-13910 C>T polymorphism) with obesity in the Canary Islands. PLoS One. 2012;7(8):e43978.

    CAS PubMed Google Scholar

  • Bergholdt HK, Nordestgaard BG, Ellervik C. Milk intake is not associated with low risk of diabetes or overweight-obesity: a Mendelian randomization study in 97,811 Danish subjects. Am J Clin Nutri. 2015;102(2):487–96.

    CAS PubMed Google Scholar

  • Hartwig FP, Horta BL, Smith GD, de Mola CL, Victora CG. Association of lactase persistence genotype with milk consumption, obesity and blood pressure: Mendelian randomization study in the 1982 Pelotas Birth Cohort (Brazil), with systematic review and meta-analysis. Int J Epidemiology. 2016;45(5):1573–87.

    PubMed Google Scholar

  • Yang Q, Lin SL, Au Yeung SL, Kwok MK, Xu L, Leung GM, et al. Genetically predicted milk consumption and bone health, ischemic heart disease and type 2 diabetes: a Mendelian randomization study. Eur J Clin Nutri. 2017;71(8):1008–12.

    CAS PubMed Google Scholar

  • Vimaleswaran KS, Zhou A, Cavadino A, Hyppönen E. Evidence for a causal association between milk intake and cardiometabolic disease outcomes using a two-sample Mendelian randomization analysis in up to 1,904,220 subjects. Int J Obes. 2021;45(8):1751–62.

    CAS Google Scholar

  • Zhang Z, Wang M, Yuan S, Larsson SC, Liu X. Genetically predicted milk intake and risk of neurodegenerative diseases. Nutrients. 2021;13(8).

  • Larsson SC, Mason AM, Kar S, Vithayathil M, Carter P, Baron JA, et al. Genetically approximated milk consumption and risk of colorectal, bladder, breast, and prostate cancer: a two-sample Mendelian randomization study. BMC Med. 2020;18(1):370.

    CAS PubMed Google Scholar

  • Timpson NJ, Brennan P, Gaborieau V, Moore L, Zaridze D, Matveev V, et al. Can the lactase persistence genotype be used to reassess the relationship between renal cell carcinoma and milk consumption? Potentialities and problems in the application of Mendelian randomization. Cancer Epidemiol Biomark Prev. 2010;19(5):1341–8.

    CAS Google Scholar

  • Skaaby T, Kilpeläinen TO, Mahendran Y, Huang LO, Sallis H, Thuesen BH, et al. Association of milk intake with hay fever, asthma and lung function: a Mendelian randomization analysis. Eur J Epidemiol. 2022.

  • Mustafa OM, Daoud YJ. Is dietary milk intake associated with history of cataract extraction in older adults? An analysis of the US population. J Ophthalmol. 2020;2020:2562875.

    PubMed Google Scholar

  • Yuan S, Wang L, Sun J, Yu L, Zhou X, Yang J, et al. Genetically predicted sex hormone levels and health outcomes: investigating Mendelian randomization across the phenomenon. Int J Epidemiology. 2022.

  • Denny JC, Bastarache L, Ritchie MD, Carroll RJ, Zink R, Mosley JD, et al. Systematic comparison of the phenomenon-wide association study of electronic medical record data and genome-wide association study data. Nat Biotechnol. 2013;31(12):1102–10.

    CAS PubMed Google Scholar

  • Li X, Meng X, He Y, Spiliopoulou A, Timofeeva M, Wei WQ, et al. Genetically determined serum urate levels and cardiovascular and other diseases in the UK Biobank cohort: a phenomenon-wide Mendelian randomization study. PLoS Med. 2019;16(10):e1002937.

    CAS PubMed Google Scholar

  • Kurki MI, Karjalainen J, Palta P, Sipilä TP, Kristiansson K, Donner K, et al. FinnGen: Unique genetic information from combined isolated population and national health record data. medRxiv. 2022.

  • Mahajan A, Taliun D, ​​Thurner M, Robertson NR, Torres JM, Rayner NW, et al. Fine mapping of type 2 diabetes loci to single variant resolution using high-density imputation and islet-specific epigenome maps. Nat Genet. 2018;50(11):1505–13.

    CAS PubMed Google Scholar

  • Chiou J, Geusz RJ, Okino ML, Han JY, Miller M, Melton R, et al. Interpreting type 1 diabetes risk with single-cell genetics and epigenomics. Nature. 2021;594(7863):398–402.

    CAS PubMed Google Scholar

  • Graham SE, Clarke SL, Wu KH, Kanoni S, Zajac GJM, Ramdas S, et al. The power of genetic diversity in genome-wide lipid association studies. Nature. 2021;600(7890):675–9.

    CAS PubMed Google Scholar

  • Verma A, Bradford Y, Dudek S, Lucas AM, Verma SS, Pendergrass SA, et al. A simulation study investigating power estimates in association studies across the phenomenon. BMC Bioinformatics. 2018;19(1):120.

    PubMed Google Scholar

  • Benjamini Y, Hochberg Y. Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing. JR Stat Soc Ser B Methodol. 1995;57(1):289–300.

    Google Scholar

  • Burgess S, Small DS, Thompson SG. A review of instrumental variable estimators for Mendelian randomization. Statistical Methods Med Res. 2017;26(5):2333–55.

    PubMed Google Scholar

  • Burgess S, Butterworth A, Thompson SG. Mendelian randomization analysis with multiple genetic variants using summary data. Genet Epidemiol. 2013;37(7):658–65.

    PubMed Google Scholar

  • Carroll RJ, Bastarache L, Denny JC. R PheWAS: data analysis and plotting tools for broad association studies of phenomena in the R environment. Bioinformatics. 2014;30(16):2375–6.

    CAS PubMed Google Scholar

  • Yavorska OO, Burgess S. MendelianRandomization: an R package to perform Mendelian randomization analyzes using summary data. Int J Epidemiology. 2017;46(6):1734–9.

    PubMed Google Scholar

  • Camacho-Barcia L, Bulló M, García-Gavilán JF, Martínez-González MA, Corella D, Estruch R, et al. Dairy product intake and the risk of incident cataract surgery in an elderly Mediterranean population: results from the PREDIMED study. Eur J Nutri. 2019;58(2):619–27.

    PubMed Google Scholar

  • Yuan S, Wolk A, Larsson SC. Metabolic and lifestyle factors in relation to senile cataract: a Mendelian randomization study. Sci Rep. 2022;12(1):409.

    CAS PubMed Google Scholar

  • Papadimitriou N, Bouras E, van den Brandt PA, Muller DC, Papadopoulou A, Heath AK, et al. A prospective study of association of broad diet to colorectal cancer risk in EPIC. Clin Gastroenterol Hepatol. 2022;20(4):864–873.e13.

    CAS PubMed Google Scholar

  • Hiller R, Sperduto RD, Reed GF, D’Agostino RB, Wilson PW. Serum lipids and age-related lens opacities: a longitudinal investigation: the Framingham Studies. Ophthalmology. 2003;110(3):578–83.

    PubMed Google Scholar

  • Yuan S, Yu L, Gou W, Wang L, Sun J, Li D, et al. Health Effects of High Serum Calcium Levels: Investigation of Mendelian Randomization Updated on the Whole Phenomenon and Review of Studies of Mendelian Randomization. eBioMedicine. 2022;76:103865.

    CAS PubMed Google Scholar

  • Thakur K, Tomar SK, Singh AK, Mandal S, Arora S. Riboflavin and health: a review of recent human research. Crit Rev Food Sci Nutr. 2017;57(17):3650–60.

    CAS PubMed Google Scholar

  • Glaser TS, Doss LE, Shih G, Nigam D, Sperduto RD, Ferris FL 3rd, et al. The Association of Dietary Lutein plus Zeaxanthin and B Vitamins with Cataracts in the Age-Related Eye Disease Study: AREDS Report No. 37. Ophthalmology. 2015;122(7):1471–9.

    PubMed Google Scholar

  • Kurilshikov A, Medina-Gomez C, Bacigalupe R, Radjabzadeh D, Wang J, Demirkan A, et al. Large-scale association analyzes identify host factors that influence the composition of the human gut microbiome. Nat Genet. 2021;53(2):156–65.

    CAS PubMed Google Scholar

  • Liao W, Khan I, Huang G, Chen S, Liu L, Leong WK, et al. Bifidobacterium animalis: the missing link to the cancer-preventive effect of Gynostemma pentaphyllum. Gut microbes. 2021;13(1):1847629.

    PubMed Google Scholar

  • Shuai M, Zuo LS, Miao Z, Gou W, Xu F, Jiang Z, et al. Multiomics analyzes reveal relationships between dairy consumption, gut microbiota, and cardiometabolic health. eBioMedicine. 2021;66:103284.

    CAS PubMed Google Scholar

  • Effects of Milk Consumption on Health: Mendelian Randomization Study of Wide Phenomenon | BMC medicine

    Leave a Reply

    Your email address will not be published.

    Scroll to top